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Abstract
The structure of a fluid of hard Gaussian overlap particles of elongation
κ = 5, confined between two hard walls, has been calculated from density-
functional theory and Monte Carlo simulations. By using the exact expression
for the excluded volume kernel (Velasco E and Mederos L 1998 J. Chem.
Phys. 109 2361) and solving the appropriate Euler–Lagrange equation entirely
numerically, we have been able to extend our theoretical predictions into the
nematic phase, which had up till now remained relatively unexplored due to the
high computational cost. Simulation reveals a rich adsorption behaviour with
increasing bulk density, which is described semi-quantitatively by the theory
without any adjustable parameters.

1. Introduction

There are many areas of soft matter in which the shapes of constituent particles are important.
These extend across the lengthscales: from molecular liquid crystals (LCs) [1]; to supramolec-
ular aggregates such as certain types of virus [2]; to the new non-spherical colloids that can now
be synthesized in a well-controlled manner [3]; and, finally, to biological granular materials
such as red blood cells. Of these, LCs are a particularly useful class: being easily oriented
by external electric or magnetic fields, or by suitably prepared surfaces, they have found wide
application in display devices [4]. Besides their intrinsic interest, models of LCs—or, more
generally, of anisotropic fluids—can provide insight into seemingly very different phenomena:
indeed, the recent discovery that cell DNA can form a so-called untwisted line hexatic phase [5],
originally predicted in a nematic context [6], has definitely established LCs as a living subject.

Although the technological interest of LCs arises from their behaviour in confined
geometries, only recently has this become amenable to study. Experimental techniques such
as scanning tunnelling microscopy [7], scanning near-field optical microscopy, atomic force
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microscopy [8], evanescent wave ellipsometry [9], second harmonic generation [10], or sum-
frequency vibrational spectroscopy [11], allow the structure and orientational order of LC films
to be resolved on the molecular scale. Finally, the full orientation profiles can be obtained from
deuterium nuclear magnetic resonance [12] or, for some geometries, waveguiding techniques
[13]. At the same time, thanks to major increases in computer power, we are now able to
numerically model fairly realistic inhomogeneous systems on a desktop workstation.

Surface anchoring, as the alignment of an anisotropic fluid by a substrate is known,
thus plays a crucial role in the fabrication of most such devices. Although much empirical
knowledge exists on how to treat surfaces in order to obtain the desired anchoring properties,
our understanding of the underlying physical processes is still very limited. Typically these
relate to the interplay between surface and intermolecular interactions, and to the crucial role of
density inhomogeneities [14]. In particular, the coupling of density and orientational order can
lead to highly non-trivial results such as complex wetting behaviour [15]. Empirical rules for
predicting the most stable alignment on the basis of the relative magnitudes of the solid-fluid
surface tensions for different orientations [16] have met with some success. However, they
reveal little of the microscopic intricacies of the phenomenon. Steric considerations, based on
the detailed shapes of molecules, have proved effective in explaining some results [17], but are
extremely case-specific. Elastic theory has been used to describe LCs at grooved surfaces [18].
Yet it assumes (i) slow spatial variation of the director; (ii) uniaxiality; and (iii) spatial
uniformity of the scalar order parameter, which recent experiments [7] and simulations [19]
show not to be valid close to a solid substrate. Landau–de Gennes theory [20] removes all
of these assumptions, but still neglects density inhomogeneities. Moreover, it introduces
phenomenological parameters not easily related to microscopic quantities. Early microscopic
theories of the solid-nematic interface either assumed the LC to be bulk-like right up to the
surface [21,22], or constrained the density profile to have a special form [23,24]; more recent
work [25–28] has gone beyond this, even considering curved hard surfaces [29].

Here we revisit the basic problem of finding the structure of a fluid of hard rods between two
hard (flat and structureless) walls. This is readily identified as the simplest possible model of a
confined LC or anisotropic colloidal suspension, but it also relates to granular materials, which
can be made to attain entropically-favourable states by means of vibration. (In a hard-core
system such as this, the free energy contains only entropic contributions, which nevertheless
lead to surprisingly rich behaviour.) Previous work [25, 26] considered only the case where
the bulk (i.e. the central part of the film) is isotropic, or where rods are constrained to point
along the three coordinate axes (cf. the theory—but not the simulations—of [28]). We have
performed the first density-functional calculation of the density and order parameter profiles of
moderately-elongated hard rods with continuous orientations, for bulk densities in the nematic
range. In addition, we have not assumed any functional forms, or made use of any expansions,
either of the interaction kernel or of the distribution functions, but instead fully numerically
solved the Euler–Lagrange equation that follows from minimization of the free energy. The
only limitation comes from employing the second-virial (Onsager) approximation: Allen [30]
has reported excellent agreement between theory and simulation for hard ellipsoids of length-
to-breadth ratio κ = 15, but this is expected to worsen for smaller particle elongations.

This paper is organized as follows: in section 2 we describe our model and the simple
Onsager second-virial approximation we used to treat it. Then in section 3 we highlight several
novel aspects of the algorithm employed for the solution of the Euler–Lagrange equation, and
compare our theoretical predictions for the density and order parameter profiles with Monte
Carlo (MC) simulation results. We also assess the validity of an earlier approach by one of us,
where the density, order parameter and tilt angle profiles were assumed to be step functions [22].
Finally in section 4 we discuss some directions for future research.
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2. Theory

We model the interaction between uniaxial rod-like particles by means of the hard Gaussian
overlap (HGO) potential used previously in 3d bulk simulations and Onsager theory of lyotropic
LC behaviour [31] (i.e. where the LC phase transitions are driven by density, rather than
temperature, changes):

U12(r12, ω1, ω2) =
{

0 if r12 � σ(r̂12, ω1, ω2)

∞ if r12 < σ(r̂12, ω1, ω2)
(1)

where ωi = (θi, φi) are the polar and azimuthal angles describing the orientation of the long
axis of particle i, and and r̂12 = r12/r12 is a unit vector along the line connecting the centres
of the two particles. The range parameter function is given by

σ(r̂12, ω1, ω2) = σ0

[
1 − 1

2
χ

{
(r̂12 · ω̂1 + r̂12 · ω̂2)

2

1 + χ(ω̂1 · ω̂2)
+

(r̂12 · ω̂1 − r̂12 · ω̂2)
2

1 − χ(ω̂1 · ω̂2)

}]− 1
2

(2)

where ω̂i = (cosφi sin θi, sin φi sin θi, cos θi) and χ = (κ2 −1)/(κ2 + 1), κ being the particle
length to breadth ratio, σL/σ0. For moderate κ , the HGO model is a good approximation to the
hard ellipsoid (HE) contact function [32, 33]; furthermore, their virial coefficients (and thus
their equations of state, at least at low to moderate densities) are very similar [34]. Finally,
it has the considerable computational advantage over HEs that σ(r̂12, ω1, ω2), the distance of
closest approach between two particles, is given in closed form. Particle–substrate interactions
have been modelled using a hard needle–wall potential

Uwall(z, θ) =
{

0 if |z − z0| � σL

2 cos θ
∞ if |z − z0| < σL

2 cos θ
(3)

where z0 represents the location of a substrate. Physically, this corresponds to a system where
the molecules are able to embed their side groups into, e.g. an adsorbed surface layer.

In order to find the equilibrium density distribution of a HGO film, we start from the
grand-canonical functional [35]

β� [ρ(r, ω)] = βF [ρ(r, ω)] + β

∫ [
2∑

i=1

Uwall(θ, |z − zi0|) − µ

]
ρ(r, ω)drdω

=
∫

ρ(r, ω)
[
log ρ(r, ω) − 1

]
drdω

−1

2

∫
ρ(r1, ω1)f12(r1, ω1, r2, ω2)ρ(r2, ω2) dr1dω1dr2dω2

+β
∫ [

2∑
i=1

Uwall(|z − zi0|, θ) − µ

]
ρ(r, ω) drdω (4)

where F [ρ(r, ω)] is the intrinsic Helmholtz free energy of the inhomogeneous fluid,
f12(r1, ω1, r2, ω2) = exp [−βU12(r1, ω1, r2, ω2)]−1 is its Mayer function, µ is the chemical
potential, zi0 (i = 1, 2) are the positions of the two substrates, and, because we are dealing
with hard-body interactions only, for which the temperature is an irrelevant variable, we can
set β = 1/kBT = 1 in all practical calculations (we retain it in the formulae for generality).
ρ(r, ω) is the density-orientation profile in the presence of the external potential Uwall(z, θ);
it is normalized to the total number of particles N ,∫

ρ(r, ω) drdω = N (5)
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and is related to the probability that a particle positioned at r has orientation between ω and
ω + dω 6. Then from equation (1) it follows that the interaction term in equation (4) is just
the excluded volume of two HGO particles, weighted by the density-orientation distributions
ρ(r, ω). This equation constitutes the Onsager approximation to the free energy of the confined
HGO fluid.

In equation (3) we have implicitly chosen the z-axis to be perpendicular to the walls. We
further assume that there is no in-plane structure, so that all quantities are functions of z only.
Then equation (4) simplifies to

β� [ρ(z, ω)]

Sxy

=
∫

ρ(z, ω)
[
log ρ(z, ω) − 1

]
dzdω

−1

2

∫
ρ(z1, ω1)�(z1, ω1, z2, ω2)ρ(z2, ω2) dz1dω1dz2dω2

+β
∫ [

2∑
i=1

Uwall(|z − zi0|, θ) − µ

]
ρ(z, ω) dzdω (6)

where Sxy is the interfacial area. �(z1, ω1, z2, ω2) is now the area of a slice (cut parallel to
the bounding plates) of the excluded volume of two HGO particles of orientations ω1 and ω2

and centres at z1 and z2 [25]; let us call it the excluded slice. A major advantage from the
computational point of view is that an analytical expression has been derived for the excluded
slice of HGO particles [36]. Note that for |zi − zi0| < σL/2, i.e. close to the surfaces, the range
of θi will depend on zi , and consequently we will need to evaluate and store �(z1, ω1, z2, ω2)

as a function of z1 and z2 individually, rather than of |z1 − z2| (although �(z1, ω1, z2, ω2) is,
of course, translationally invariant). We shall come back to this point below.

Minimization of the grand canonical functional, equation (6),

δ� [ρ(z, ω)]

δρ(z, ω)
= 0 (7)

yields the Euler–Lagrange equation for the density-orientation profile,

log ρ(z, ω) = βµ −
∫ ′

�(z, ω, z′, ω′)ρ(z′, ω′) dz′dω′ (8)

where the effect of the (hard!) wall potential, given by equation (3), has been incorporated
through restriction of the range of integration over θ :∫ ′

dω =
∫ 2π

0
dφ

∫ π−θm

θm

sin θ dθ =
∫ 2π

0
dφ

∫ cos θm

− cos θm

dx (9)

with

cos θm =
{

1 if |z − z0| � σL

2|z−z0|
σL/2 if |z − z0| < σL

2
(10)

z0 being, we recall, the position of a substrate. It is clear from the structure of equation (8)
that µ is the Lagrange multiplier associated with requiring that the mean number of particles
in the system be N . It is thus equivalent to fix µ or N (see also discussion in [30]): in what
follows we opt for the latter, since it allows closer contact with (NVT) simulation.

Once ρ(ω, z) has been found, we can integrate out the angular dependence to get the
density profile,

ρ(z) =
∫

ρ(z, ω) dω (11)

6 It is trivial to introduce, by a simple rescaling, a distribution function normalized to unity, if desired.
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and use this result to define the orientational distribution function (ODF) f̂ (z, ω) =
ρ(z, ω)/ρ(z), from which we can calculate the orientational order parameters in the laboratory-
fixed frame [37]:

η(z) = 〈P2(cos θ)〉 = Qzz (12)

ε(z) = 〈sin 2θ sin φ〉 = 4

3
Qyz (13)

ν(z) = 〈sin 2θ cosφ〉 = 4

3
Qxz (14)

ς(z) = 〈sin2 θ cos 2φ〉 = 2

3
(Qxx − Qyy) (15)

τ(z) = 〈sin2 θ sin 2φ〉 = 4

3
Qxy (16)

where 〈A〉 = ∫ Af̂ (z, ω) dω. These are the five independent components of the nematic order
parameter tensor, Qαβ = 〈 1

2 (3ω̂αω̂β − δαβ)〉. In the particular case where there is no twist, i.e.
the director is confined to a plane that we can take as the xz plane, ε(z) = τ(z) = 0.

In earlier work [37, 38], the functional minimization was performed in two stages, i.e.
with respect to the ODF and the density profile separately. This is entirely equivalent to direct
minimization with respect to ρ(z, ω), but less convenient for practical purposes when, as in
the model considered here (as well as in [25,26]), there is strong coupling between positional
and orientational degrees of freedom coming from a non-spherical particle shape. In the next
section we give details of the numerical method employed to solve equation (8).

3. Results

In this section we find the structure of a confined HGO fluid from theory, and validate this
by comparison with computer simulation. It is important to realize, however, that owing to
the second-virial approximation, the location of the isotropic–nematic (I–N) transition may
not be predicted very accurately. Therefore we start by calculating the bulk phase diagram.
From the bulk version of equation (6) (i.e. with all spatial integrations extended to ±∞ and
Uwall(z, θ) = 0) we have found the pressure and chemical potential of the I and N phases and
performed the standard common-tangent construction. Both the angle-averaged second virial
coefficient (for the I phase) and the angle-dependent excluded volume (for the N phase) are
known analytically (see, e.g. [39]). The remaining integrations over ωi were carried out by
16-point Gauss–Legendre quadrature.

Figure 1 shows the phase diagram, in terms of the reduced density, ρ∗ = ρσ 3
0 , versus

elongation κ; we have also included I–N coexistence points as determined by constant NpT

simulation [31]. Not unexpectedly, theory overestimates the coexistence densities and the
first-orderness of the transition considerably, with better agreement for the larger κ; for small
elongations, the contribution of higher virial coefficients is substantial. Ginzburg et al [40]
obtained an even stronger transition and a stronger dependence of the coexistence curves
on κ , but this may be a numerical artifact: in our experience, it is crucial to use a large
number of integration points and impose a stringent convergence condition. More sophisticated
theories [41,42] have been applied to the I–N transition of hard rods; in particular, Parsons–Lee
rescaling [42] has been shown to yield very good agreement with simulation [43]. However,
their extension to non-uniform systems is highly non-trivial [44]. In this paper we seek to
establish how useful the simpler Onsager approximation is for describing ultra-thin (a few
molecular lengths) films of moderately elongated particles. All results presented henceforth
are for κ = 5, with the distance between bounding walls fixed at L = 20σ0.
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0.0
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N

I

Figure 1. N–I phase transition of the HGO fluid, from theory. ρ∗ = ρσ 3
0 and κ are the

reduced density and the elongation, respectively. The symbols (filled squares) are simulation
results from [31].

Equation (8) was solved iteratively by the Picard method, with an admixture parameter of
0.9 (i.e. 90% of ‘old’ solution in each iteration), starting from a uniform and isotropic profile.
Integrations were performed by Gauss–Legendre quadrature, using 64 z-points (the minimum
necessary to resolve the structure of profiles at the higher densities considered) and 16 × 16
ω-points (for consistency with the bulk calculation). Note that the range of ω′ depends on
z′: the closer a particle is to a substrate, the fewer orientations are accessible. In order to
achieve good accuracy it is nevertheless crucial to include the same number of points in the
angular integrations for all z′. Results were collected after 600 iterations, which is dictated
by the computational cost. Convergence errors, defined as the sum of the absolute values of
differences between consecutive iterates at 64 × 16 × 16 = 16 384 points, varied between
10−1 and 10−8, depending on the bulk density.

For comparison, we have also simulated a system of 1000 HGO particles using Metropolis
Monte Carlo (MC) in the canonical (NVT) ensemble. With the substrate separation fixed at
L = 20σ0, the two remaining box dimensions were set equal to each other at values appropriate
to each required density. Simulations were performed in a compression sequence starting at
ρ∗ = 0.08, each run being initiated from a compressed version of a configuration previously
equilibrated at a neighbouring density. To avoid overlaps in these initial configurations,
compressions were effected via a series of intermediate steps, overlaps being checked for
and removed (using particle displacement moves) at each step. Production run lengths at
each density investigated were set at 2.5 × 105 MC sweeps (where one sweep comprises
one attempted move per particle), equilibration requiring between 2.5 × 105 and 106 MC
sweeps. Maximum translational and rotational move parameters were allowed to vary during
the equilibration stage until they yielded acceptance ratios of approximately 50%. During the
production stage, profiles of number density ρ(z), and nematic order parameter, η(z), were
calculated by dividing the system into 100 equal slices aligned parallel to the confining walls.

As noted above in connection with figure 1, the I–N transition occurs at different densities,
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and with different widths, in theory and in simulation. The question then arises of how to
meaningfully compare theory and simulation results. Allen and co-workers [45] proposed
a phenomenological scaling of the density profile at the I–N interface that seems very well
suited for this purpose: d(z) ≡ (ρ(z) − ρI )/(ρN − ρI ) from theory and simulation were in
very satisfactory agreement. Here we extend Allen et al’s approach and choose state points
characterised by the same dbulk ≡ (ρbulk − ρI )/(ρN − ρI ). Of course, it is essential to
have accurate I–N coexistence densities. From theory, ρ∗,th

I = 0.2107 and ρ
∗,th
N = 0.2347;

whereas from MC NpT simulation of a 256-particle system Padilla and Velasco [31] found
ρ

∗,sim
I � 0.113 and ρ

∗,sim
N � 0.12. Noting Padilla and Velasco’s statement that due to the small

number of particles used “the accuracy of these estimates is uncertain”, in this work we have
taken ρ

∗,sim
I = 0.116 since this improves the accord between theoretical and simulated order

parameters (see below). At this stage, we cannot determine whether this slight adjustment is
needed simply because of a possible error in Padilla and Velasco’s ρ

∗,sim
I or whether it is due

to the slight upward shift of ρ∗,th of the confined film relative to the bulk7. This matter will
likely only be resolved by locating the I–N transition of the (bulk as well as confined) HGO
fluid in a more precise MC study. Still, we regard Allen et al’s scaling as the best working tool
for comparison of these systems, despite the fact that it lacks a more fundamental justification.
The unscaled densities at which simulation runs and theory calculations have been performed,
as well as the symbols used in figures 2–4, are collected in table 1.

Table 1. Scaled densities dbulk for comparison of theory (th) and simulation (sim) results. ρ∗,th
and ρ∗,sim are the unscaled densities at which the theoretical calculations and the simulations have
been performed. Also included are the symbols/line styles corrsponding to each dbulk in figures
2–4.

dbulk ρ∗,th Line style(th) ρ∗,sim Symbol (sim)

−0.25 0.2047 Solid 0.115 Circles
1.00 0.2347 Long-dashed 0.12 Squares
2.25 0.2647 Short-dashed 0.125 Diamonds
3.50 0.2947 Dot-dashed 0.13 Right triangles

In figure 2 we plot representative d(z) profiles (only two for clarity) corresponding to
bulk densities in the high-density isotropic and and well-developed nematic regions (other
authors [21,25,26] have previously addressed the low-density regime). Characteristically, the
density is not uniform and there is marked equilibrium peak formation. This feature is captured
by both simulation and theory, although the latter underestimates, sometimes severely, the
height of the peaks and the depth of the troughs. Recall that at lower densities, in the isotropic
bulk range, the density profile of hard rods of finite elongation exhibits two peaks: one, at
|z − z0| � σL/2, corresponds to particles able to rotate in 3d without direct interaction with
the substrate [46] whilst that at |z − z0| ∼ 0 corresponds to particles lying approximately
parallel with the substrate. In the higher-density situations considered here, the surface peaks
dominate, and further peaks begin to form farther into the bulk, suggesting that the dominant
mechanism is now layering. This interpretation is supported by experimental evidence [47].

Figure 3 shows the density-driven evolution of the order parameter profile η(z) = Qzz(z).
In the isotropic phase, Qzz(z) is everywhere zero except in the surface layers, by which we
understand the regions in which the rotational freedom of a particle is restricted by the presence
of the walls. Because the walls are impenetrable, see equation (3), the thickness of these layers
is half the length of a particle, 2.5σ0. The consequence of this hindrance at the walls is then

7 In a layer as thin as this, the I–N transition will be slightly shifted in density relative to the bulk, see [28]. We have
not investigated this in detail.
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Figure 2. Scaled density d(z) for dbulk = −0.25 (top, I range) and dbulk = 3.50 (bottom, N range).
Symbols are from simulation, solid (top) and dot-dashed (bottom) lines are from theory (the lines
connecting the simulation data points are just to guide the eye). See text and table 1 for details.

nematic order with symmetry axis along the z-direction, around which particles are distributed
isotropically but with polar angles on average greater than 45 degrees (‘antinematic’, as in [28]).
This yields Qzz(z) < 0 in the surface layers, with the expected limit of −0.5 at the walls (it
is quadratic in z in the limit of very low densities) [21]. On increasing the density a transition
takes place into an anisotropic phase, later to be recognized as a uniaxial nematic, at which
Qzz(z) becomes finite throughout the film. Because of the walls, the change from I to N is
not uniform in the bulk beyond the surface layers: rather, the N phase grows inwards from
the substrates, as seen in [28]. Immediately after the transition the Qzz(z) profile retains its
parabolic shape at the walls [21], but at higher densities it becomes flat again (but now non-zero
everywhere), with a degree of order more or less uniform. A tendency is then also observed
to mirror the peak structure of the density profiles, but this is not very pronounced.

Qxx(z) is plotted in figure 4. This is positive at the walls and vanishes in the bulk when
the overall density pertains to the isotropic phase (the simulation results remain at � 0.25 due
to finite-size effects). At the transition point the bulk value rises is a manner similar to Qzz(z),
i.e. it is seeded at the walls. As will become apparent from figure 5, Qxx plays the role of the
main uniaxial order parameter.

In figure 5 the three diagonal components, Qxx(z), Qyy(z) and Qzz(z), of the order
parameter tensor, calculated from theory at three different densities: ρ∗,th = 0.16, 0.19 and
0.25 can be seen. Analysis of all three is indispensable for phase identification. The off-
diagonal components vanish at all densities, implying absence of twist in the structure. For
ρ∗ = 0.16 the three diagonal order parameters are zero save in the surface layers. Qzz(z)

attains −0.5 at z = 0 and z = L, which indicates, unsurprisingly, perfect order parallel to
the substrates. In addition, the whole film is uniaxial: Qxx(z) = Qyy(z), taking the value
0.25 at the walls. Traditionally in LCs the director is taken to be given by the eigenvector
associated with the largest eigenvalue of Q. Here we cannot talk of a director (a mesoscopic
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Figure 3. Order parameter Qzz(z) ≡ η(z) measured along the normal to the substrates. Symbols
are simulation points, lines are from theory. See table 1 for details.
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Figure 4. Order parameter Qxx(z). Symbols as in figure 3.

entity) since no appropriate coarse graining is involved. Instead we utilize the concept of a
symmetry axis. In the present case this is associated with the lowest eigenvalue, which is
the largest in absolute value. As the density is increased, the ordered surface layers remain
unchanged until they undergo a uniaxial-to-biaxial transition, as follows from the fact that
at ρ∗ = 0.19, Qxx(z) �= Qyy(z) Although the surface regions are now biaxial, the bulk
remains isotropic. No sharp isotropic-biaxial nematic interface is seen, but rather an interfacial
region of thickness about half a particle length. The observation of a surface biaxial phase
at a density lower than that of the bulk I–N transition confirms earlier conclusions derived
by Sluckin and Poniewierski [48] and Poniewierski [25] on the basis of Landau–de Gennes
theory, as well as the density-functional and simulation results of Van Roij et al for hard
spherocylinders [28]. Consistently, Qzz(z) is negative at the walls, which is the only possible
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outcome in the case of uniaxial hard bodies. Finally, for ρ∗ = 0.25 a well-developed uniaxial
N phase is observed in the central part of the film and there persists biaxial order in the surface
regions. However, unlike at lower densities, where it was found that Qxx(z) = Qyy(z), we
now have Qzz(z) = Qyy(z): the main symmetry axis switched from z to x at the uniaxial-to-
biaxial transition. This phenomenon, which in Landau–de Gennes theory is called eigenvalue
exchange, does not involve either deformation or physical reoriention of the particles. Such a
biaxiality-mediated symmetry axis change has also been predicted to occur in the context of
hybrid-aligned LC films [49]. More work is needed to establish the order of this transition.
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Figure 5. Diagonal components Qxx(z) (diamonds), Qyy(z) (solid line) and Qzz(z) (triangles) of
the order parameter tensor Q, for ρ∗,th = 0.16 (top), 0.19 (middle) and 0.25 (bottom). See the text
for discussion of the eigenvalue identity exchange phenomenon.

In conclusion, there is good agreement between theory and simulation results for the
diagonal components of the order parameter tensor, both in the I and N phases, provided
comparison is made at the same scaled density dbulk , defined according to the prescription of
Allen et al. That the density profiles are much less faithfully reproduced, is hardly surprising,
since the Onsager approximation does not yield the correct functional dependence of the order
parameters on density. It should be stressed that our method is particularly useful for the
nematic phase since it does not require a priori knowledge of the chemical potentials: instead,
it uses the bulk density as input.

4. Conclusions

In this paper we have presented a density-functional treatment of a HGO fluid confined between
parallel hard walls. Despite the simplicity (one might almost say naivety) of the Onsager
approximation, we have been able to reproduce qualitatively the density and orientational
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structure, as obtained from computer simulation, of particles of elongation κ = 5. Contrary to
what was assumed in earlier work [22], the density-orientation profile is very non-uniform close
to the substrates; such inhomogeneity can have dramatic consequences, such as discontinuous
orientational transitions [46].

In effecting comparison between theory and simulation, account has to be taken of the
fact that they yield rather different I–N transition densities and widths. This is due to our
neglect of correlations of order higher than second-virial, which are relevant in the range
of densities of interest. Greater predictive power would require a far more sophisticated
treatment, such as a weighted-density approximation along the lines of [44]. The development
and implementation of such a scheme are, however, highly non-trivial. In keeping with our
aim of assessing the validity and usefulness of the Onsager approach, we instead adapted
a phenomenological scaling of the density first proposed by Allen and collaborators [45].
Unsurprisingly, agreement is less good than for HEs of ellongation κ = 15 [30], but its quality
is strongly dependent on the accuracy of the isotropic and nematic coexistence densities as
determined independently by constant MC NpT simulation. We are currently extending our
calculations to other (smaller) particle elongations, including oblate shapes (κ < 1).

The present theory can be straightforwardly generalized to more sophisticated surface
interactions, such as hybrid geometries where different anchorings are favoured at either
substrate. This work is in progress and will be reported elsewhere. Finally, though decidedly
different in character the basic entropy-driven features of granular systems should be the same;
whether and how they can be overcome by dissipation-frictional processes is a challenge for
future investigation.
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